Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167183, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657551

RESUMO

BACKGROUND: The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS: We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS: TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS: TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.

2.
J Clin Gastroenterol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38652022

RESUMO

BACKGROUND: There is a lack of sufficient evidence on whether mixed-type differentiated predominant early gastric cancer (MD-EGC) can be treated endoscopically by referring to the criteria for differentiated-type early gastric cancer (EGC). This study aims to evaluate the efficacy of endoscopic submucosal dissection (ESD) in MD-EGC. METHODS: Patients with differentiated-type EGC treated with ESD first from January 2015 to June 2021 were reviewed, including MD-EGC and pure differentiated-type EGC (PD-EGC). Clinical data, including the clinicopathological characteristics, resection outcomes of ESD, and recurrence and survival time, were collected, and the difference between MD-EGC and PD-EGC was tested. RESULTS: A total of 48 patients (48 lesions) with MD-EGC and 850 patients (890 lesions) with PD-EGC were included. Compared with PD-EGC, MD-EGC had a higher submucosal invasion rate (37.5% vs. 13.7%, P<0.001) and lymphatic invasion rate (10.4% vs. 0.4%, P<0.001). The rates of complete resection (70.8% vs. 92.5%, P<0.001) and curative resection (54.2% vs. 87.4%, P<0.001) in MD-EGC were lower than those of PD-EGC. Multivariate analysis revealed that MD-EGC (OR 4.26, 95% CI, 2.22-8.17, P<0.001) was an independent risk factor for noncurative resection. However, when curative resection was achieved, there was no significant difference in the rates of recurrence (P=0.424) between the 2 groups, whether local or metachronous recurrence. Similarly, the rates of survival(P=0.168) were no significant difference. CONCLUSIONS: Despite the greater malignancy and lower endoscopic curative resection rate of MD-EGC, patients who met curative resection had a favorable long-term prognosis.

3.
Neuroscience ; 547: 28-36, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552734

RESUMO

Depression is one of the most common forms of psychopathology, which is associated with gut microbiota dysfunction. Dihydroartemisinin (DHA) has been shown to regulate gut microbiota and ameliorate neuropathies, but whether it can be used to treat depression remains unclear. Our study found that DHA treatment raised the preference for sugar water in chronic unpredictable mild stress (CUMS)-induced mice and reduced the immobility time in open field, forced swimming and tail suspension experiments, and promoted doublecortin expression. Additionally, DHA up-regulated the diversity and richness of intestinal microbiota in depression-like mice, and restored the abnormal abundance of microbiota induced by CUMS, such as Turicibacter, Lachnospiraceae, Erysipelotrichaceae, Erysipelatoclostridium, Eubacterium, Psychrobacter, Atopostipes, Ileibacterium, Coriobacteriacea, Alistipes, Roseburia, Rikenella, Eggerthellaceae, Ruminococcus, Tyzzerella, and Clostridia. Furthermore, KEGG pathway analysis revealed that gut microbiota involved in the process of depression may be related to glucose metabolism, energy absorption and transport, and AMPK signaling pathway. These results indicated that DHA may play a protective role in CUMS-induced depression by mediating gut-microbiome.

4.
Redox Biol ; 71: 103094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479221

RESUMO

Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Compostos de Sulfidrila/metabolismo , Antioxidantes/metabolismo , Transferases/metabolismo , Oxirredução , Glutationa/metabolismo , Oxirredutases/metabolismo , Dissulfetos/química
5.
Toxicol Appl Pharmacol ; 485: 116910, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521372

RESUMO

3-nitropropionic acid (3-NPA), a toxic metabolite produced by mold, is mainly found in moldy sugarcane. 3-NPA inhibits the activity of succinate dehydrogenase that can induce oxidative stress injury in cells, reduce ATP production and induce oxidative stress in mouse ovaries to cause reproductive disorders. Ursolic acid (UA) has a variety of biological activities and is a pentacyclic triterpene compound found in many plants. This experiment aimed to investigate the cytotoxicity of 3-NPA during mouse oocyte in vitro maturation and the protective effects of UA on oocytes challenged with 3-NPA. The results showed that UA could alleviate 3-NPA-induced oocyte meiotic maturation failure. Specifically, 3-NPA induced a decrease in the first polar body extrusion rate of oocytes, abnormal distribution of cortical granules, and an increase in the proportion of spindle abnormalities. In addition, 3-NPA caused mitochondrial dysfunction and induced oxidative stress, including decreases in the GSH, mitochondrial membrane potential and ATP levels, and increases in the ROS levels, and these effects led to apoptosis and autophagy. The addition of UA could significantly improve the adverse effects caused by 3-NPA. In general, our data show that 3-NPA affects the normal development of oocytes during the in vitro culture, and the addition of UA can effectively repair the damage caused by 3-NPA to oocytes.

6.
Orthod Craniofac Res ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512245

RESUMO

OBJECTIVE: To investigate the effects of congenital unilateral first permanent molar occlusal loss (CUMOL) on the morphology and position of temporomandibular joint (TMJ). MATERIALS AND METHODS: Cone-beam computed tomography (CBCT) images of 37 patients with CUMOL (18 males and 19 females, mean age: 13.60 ± 4.38 years) were divided into two subgroups according to the status of second molar (G1: the second molar not erupted, n = 18, G2: second molar erupted, n = 19). The control group consisted of 33 normal occlusion patients (9 males and 24 females, mean age: 16.15 ± 5.44 years) and was divided into 2 subgroups accordingly (G3: the second molar had not erupted, n = 18, G4: the second molar had erupted and made contact with the opposing tooth, n = 15). Linear and angular measurements were used to determine the characteristics of TMJ. RESULTS: In G1, the condyle on the side of the CUMOL shifts posteriorly, with significant side differences observed in Anterior space (AS, P < .05) and Posterior space (PS, P < .05). However, with the eruption of the second permanent molars, in G2, the condyle on the CUMOL side moves posteriorly and inferiorly. This results in significant lateral differences in the AS (P < .05), PS (P < .05), and Superior space (SS, P < .05). Additionally, there is an increase in the thickness of the roof of the glenoid fossa (TRF) on the CUMOL side (P < .05), and a decrease in the inclination of the bilateral articular eminences (P < .05). CONCLUSIONS: CUMOL can affect the position and the morphology of the condyle and was associated with the eruption of the second permanent molars. Before the eruption of the second permanent molars, CUMOL primarily affects the position of the condyle. After the emergence of the second permanent molars, CUMOL leads to changes in both the condyle's position and the morphology of the glenoid fossa.

7.
J Sci Food Agric ; 104(7): 4438-4452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323712

RESUMO

BACKGROUND: The gut microbiota is intricate and susceptible to multiple factors, with diet being a major contributor. The present study aimed to investigate the impact of four commonly used laboratory animal control diets, namely Keao Xieli's maintenance diet (KX), HFK's 1025 (HF), Research Diets' D12450B (RD), and Lab Diet's 5CC4 (LD), on the gut microbiota of mice. RESULTS: A total of 40 mice were randomly assigned to four groups, and each group was fed one of the four diets for a duration of 8 weeks. The assessment of gut microbiota was conducted using 16S rRNA sequencing both at the beginning of the study (week 0) and the end (week 8), which served as the baseline and endpoint samples, respectively. Following the 8-week feeding period, no significant differences were observed in physiological parameters, including body weight, visceral weight, and blood biochemical indices, across the four groups. Nonetheless, relative to the baseline, discernible alterations in the gut microbiota were observed in all groups, encompassing shifts in beta-diversity, hierarchical clustering, and key genera. Among the four diets, HF diet exhibited a significant influence on alpha-diversity, RD diet brought about notable changes in microbial composition at the phylum level, and LD diet demonstrated an interconnected co-occurrence network. Mantel analysis indicated no significant correlation between physiological parameters and gut microbiota in the four groups. CONCLUSION: Overall, our study demonstrated that the four control diets had a minimal impact on physiological parameters, while exerting a distinct influence on the gut microbiota after 8 weeks. © 2024 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , RNA Ribossômico 16S/genética , Dieta/veterinária , Animais de Laboratório/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38363666

RESUMO

Gait recognition, which aims at identifying individuals by their walking patterns, has achieved great success based on silhouette. The binary silhouette sequence encodes the walking pattern within the sparse boundary representation. Therefore, most pixels in the silhouette are under-sensitive to the walking pattern since the sparse boundary lacks dense spatial-temporal information, which is suitable to be represented with dense texture. To enhance the sensitivity to the walking pattern while maintaining the robustness of recognition, we present a Complementary Learning with neural Architecture SearcH (CLASH) framework, consisting of walking pattern sensitive gait descriptor named dense spatial-temporal field (DSTF) and neural architecture search based complementary learning (NCL). Specifically, DSTF transforms the representation from the sparse binary boundary into the dense distance-based texture, which is sensitive to the walking pattern at the pixel level. Further, NCL presents a task-specific search space for complementary learning, which mutually complements the sensitivity of DSTF and the robustness of the silhouette to represent the walking pattern effectively. Extensive experiments demonstrate the effectiveness of the proposed methods under both in-the-lab and in-the-wild scenarios. On CASIA-B, we achieve rank-1 accuracy of 98.8%, 96.5%, and 89.3% under three conditions. On OU-MVLP, we achieve rank-1 accuracy of 91.9%. Under the latest in-the-wild datasets, we outperform the latest silhouette-based methods by 16.3% and 19.7% on Gait3D and GREW, respectively.

9.
Food Chem Toxicol ; 185: 114445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311047

RESUMO

IsoliQuirtigenin (ILG) has been widely studied in somatic cells and tissues, but less in reproductive development. It is a kind of widely used food additive. In this study, it was found that ILG could significantly increase the levels of ROS,GSH and MMP in mouse oocytes (P < 0.01). In order to explore the cause of this phenomenon, it was found that the abnormal distribution of mitochondria and ATP synthesis levels were significantly increased (P < 0.05). At this time, we made a reasonable hypothesis that ILG affected mitochondrial function. In subsequent studies, it was found that the endogenous ROS accumulation level in mitochondria was significantly increased. After continuous RT-PCR screening, it was found that the expression of Nrf2 was significantly inhibited (P < 0.01). Its upstream and downstream FOXO3 GPX1, CAT, SOD2, SIRT1 gene also appear different degree of significant change (P < 0.05), in which the lower expression of NADP + (P < 0.05) illustrates the mitochondrial ATP synthesis electronic chain were suppressed, it also has the reason, By inhibiting electron chain and ATP synthesis, ILG leads to oocyte apoptosis and initiation of autophagy, reducing oocyte and its subsequent developmental potential.


Assuntos
Chalcona/análogos & derivados , Glucosídeos , Doenças Mitocondriais , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Espécies Reativas de Oxigênio/metabolismo , Oócitos , Trifosfato de Adenosina/metabolismo
10.
Int J Pharm ; 651: 123767, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199448

RESUMO

Salicylic acid is a raw material for preparing aspirin and holds an important position in medical history. Studying the crystallization of these two drugs is of great significance in improving their dissolution rate, bioavailability, and physical stability. Although various techniques have been used for structural characterization, there is still a lack of information on the collective vibrational behavior of aspirin and salicylic acid eutectic compounds. Firstly, two starting materials (salicylic acid and aspirin) were ground in a 1:1 M ratio to prepare eutectic compounds. The eutectic composition was studied using vibrational spectroscopy techniques, such as X-ray powder diffusion (XRPD), terahertz time-domain spectroscopy (THz-TDS), and Raman spectroscopy. Additionally, the structure of the aspirin and salicylic acid eutectic was simulated and optimized using density functional theory. It was found that the eutectic type II was the most consistent with the experiment, and the corresponding vibration modes of each peak were provided. These results offer a unique method for characterizing the structural composition of eutectic crystals, which can be utilized to enhance the physical and chemical properties, as well as the pharmacological activity, of specific drugs at the molecular level.


Assuntos
Aspirina , Espectroscopia Terahertz , Aspirina/química , Ácido Salicílico/química , Vibração , Análise Espectral Raman
11.
iScience ; 27(1): 108602, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38161414

RESUMO

Saccharides are essential organic compounds that perform critical functions in sustaining life processes. As biomolecules, their vibrational frequencies predominantly fall in the terahertz (THz) range, making them amenable to analysis using THz techniques. In this study, L-sorbose and D-melibiose were measured using a THz time-domain spectroscopy system covering a frequency range of 0.1-2.0 THz, and their crystal structures were simulated using density functional theory. The experimental results demonstrated significant agreement with the simulation findings. In addition, the spectral properties of the two saccharides in solution were determined using microfluidic chip technology, thereby facilitating a comparison between the solid and aqueous states. The results demonstrate that the intramolecular and intermolecular interactions of the saccharides were weakened by the presence of water molecules, and the THz absorption spectrum of the same substance solution was found to be correlated with its concentration and temperature.

12.
Theriogenology ; 218: 8-15, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290232

RESUMO

To investigate the effects of limonin (Lim) on oxidative stress and early apoptosis in bovine oocytes during in vitro maturation (IVM), different concentrations of Lim (0, 10, 20, 50 µmol/L) were added to bovine IVM medium. Oocyte maturation rates and development 24 h after in vitro fertilization (IVF) were examined to determine the optimal Lim concentration. The optimal Lim concentration was added to the IVM medium, and 0 µmol/L Lim was used as the control. Immunofluorescence staining was used to detect the abnormal rate of spindle assembly, reactive oxygen species (ROS), glutathione (GSH), mitochondrial membrane potential (MMP) levels, mitochondrial distribution, and the fluorescence intensity of cathepsin B (CB)-active LC3 protein. RT‒qPCR was used to detect the mRNA expression levels of antioxidant-, apoptosis- and autophagy-related genes in oocytes. The total number of blastocysts and the proportion of apoptotic cells among blastocysts were detected. The results showed that the PBI ejection rate, cleavage rate and blastocyst rate of bovine oocytes in the 20 µmol/L Lim group were significantly higher than those in the control group (P < 0.05). Compared with those in the control group, ROS levels, abnormal mitochondrial distribution, the proportion of abnormal spindle assembly, CB activity and LC3 protein fluorescence intensity of oocytes in the 20 µmol/L Lim group were significantly decreased (P < 0.05), and GSH and MMP levels were significantly increased (P < 0.05). The expression of antioxidant genes (Prdx3, Prdx6, Sirt1) and antiapoptotic genes (Bcl-xl, Survivin) were significantly upregulated (P < 0.05), and the expression levels of proapoptotic genes (Caspase-4, BAX) and autophagy-related genes (LC3) were significantly downregulated (P < 0.05). The total number of cells among in vitro fertilized embryos was significantly increased (P < 0.05), and the apoptosis rate of blastocysts was significantly decreased (P < 0.05). Here, we show that Lim exerts positive effects on bovine oocyte IVM by regulating REDOX homeostasis, reducing spindle damage and enhancing mitochondrial function during IVM, thereby inhibiting oocyte apoptosis and autophagy.


Assuntos
Antioxidantes , Limoninas , Animais , Bovinos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Limoninas/metabolismo , Limoninas/farmacologia , Oócitos/fisiologia , Estresse Oxidativo , Glutationa/metabolismo , Blastocisto/fisiologia , Apoptose , Desenvolvimento Embrionário
13.
Int J Obes (Lond) ; 48(2): 263-270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37938287

RESUMO

BACKGROUND: The association between obesity and cardiovascular disease (CVD) in people without traditional CVD risk factors is unclear. This study aimed to investigate the association of obesity with CVD and its subtypes in people without traditional CVD risk factors. METHODS: Based on the Kailuan cohort study, the included participants were divided into different groups according to levels of body mass index (BMI) and waist height ratio (WHtR), respectively. Multivariate Cox proportional hazard models were used to evaluate the associations. RESULTS: This study included 31,955 participants [men 63.99%; mean age (48.14 ± 3.33) years]. During a median follow-up period of 12.97 (interquartile range: 12.68-13.17) years, 1298 cases of CVD were observed. Compared with the normal BMI group, the hazard ratios (HRs) for CVD, stroke, and myocardial infarction (MI) in the BMI obese group were 1.31 (95% confidence interval [CI] 1.11-1.55), 1.21 (95%CI 1.01-1.46), 1.62 (95%CI 1.13-2.33), respectively. Compared with the WHtR non-obese group, the HRs for CVD, stroke, and MI in the obese group were 1.25(95%CI 1.11-1.41), 1.18 (95%CI 1.03-1.34), 1.57 (95%CI 1.18-2.09), respectively. There was an interaction between age and WHtR (P for interaction was 0.043). The association between WHtR and CVD was stronger in people under 60 years old, with a HR of 1.44 (95%CI 1.24-1.67). CONCLUSION: We found that obesity increased the risk of CVD in people without traditional CVD risk factors. The association of WHtR with CVD was stronger in people under 60 years old.


Assuntos
Doenças Cardiovasculares , Infarto do Miocárdio , Acidente Vascular Cerebral , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Circunferência da Cintura , Obesidade/complicações , Obesidade/epidemiologia , Fatores de Risco , Índice de Massa Corporal , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/complicações , Acidente Vascular Cerebral/complicações
14.
Front Public Health ; 11: 1294126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074729

RESUMO

Background: Cancer as a global public health problem, imposes a heavy disease burden. With the rapid development of oral anti-neoplastic drugs, there has been a paradigm shift in the treatment of cancer from intravenous to oral administration. Objective: This study was conducted to investigate the trends and prescribing patterns of oral anti-neoplastic drugs in an academic tertiary hospital in China. Methods: A single-center and retrospective analysis was performed based on the prescriptions of outpatients treated with oral anti-neoplastic drugs from 2017 to 2022. Yearly prescriptions and expenditure were calculated according to their pharmacological classes, and trends were further analyzed. Defined daily doses (DDDs) and defined daily cost (DDC) of oral targeted anti-neoplastic drugs were also determined. Results: Both the number of prescriptions and expenditure of oral anti-neoplastic drugs increased progressively. There was a significant upward trend in the number and proportion of prescriptions for the older adult group, male group, and patients with gynecologic/genitourinary and respiratory cancer. Hormonal therapy agents accounted for the highest proportion of prescriptions, and letrozole was initially the most frequently prescribed drug. The number of DDDs of total oral targeted anti-neoplastic drugs showed a continuously ascending trend, primarily driven by the usage of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) and BCR-ABL TKIs. Conclusion: The prescriptions and expenditure of oral anti-neoplastic drugs, and the number of DDDs of oral targeted anti-neoplastic drugs all showed a progressively ascending trend. Further studies are needed to evaluate the long-term health and financial outcomes, and the factors influencing these prescribing patterns.


Assuntos
Pacientes Ambulatoriais , Humanos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Estudos Longitudinais , China
15.
Front Public Health ; 11: 1322019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131020

RESUMO

Background: With the intensification of global climate warming, extreme low temperature events such as cold spells have become an increasingly significant threat to public health. Few studies have examined the relationship between cold spells and mortality in multiple Chinese provinces. Methods: We employed health impact functions for temperature and mortality to quantify the health risks of the first winter cold spell in China on November 26th, 2022, and analyzed the reasons for the stronger development of the cold spell in terms of the circulation field. Results: This cold spell was a result of the continuous reinforcement of the blocking high-pressure system in the Ural Mountains, leading to the deepening of the cold vortex in front of it. Temperature changes associated with the movement of cold fronts produced additional mortality risks and mortality burdens. In general, the average excess risk (ER) of death during the cold spell in China was 2.75%, with a total cumulative excess of 369,056 deaths. The health risks associated with temperatures were unevenly distributed spatially in China, with the ER values ranging from a minimum of 0.14% to a maximum of 5.72%, and temperature drops disproportionately affect southern regions of China more than northern regions. The cumulative excess deaths exibited the highest in eastern and central China, with 87,655 and 80,230 respectively, and the lowest in northwest China with 27,474 deaths. Among the provinces, excess deaths pronounced the highest in Shandong with 29,492 and the lowest in Tibet with only 196. Conclusion: The study can provide some insight into the mortality burden of cold spells in China, while emphasising the importance of understanding the complex relationship between extreme low temperature events and human health. The outcomes could provide valuable revelations for informing pertinent public health policies.


Assuntos
Clima , Temperatura Baixa , Humanos , Temperatura , Estações do Ano , China/epidemiologia
16.
J Asian Nat Prod Res ; : 1-13, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37897053

RESUMO

Morinda officinalis is a traditional Chinese tonic herb, and have been used in the treatment of multiple diseases. Here, three iridoid glycosides isolated from M. officinalis were evaluated for their roles in the autophagy-lysosomal pathway. All three iridoid glycosides could induce TFEB/TFE3-mediated lysosomal biogenesis and trigger autophagy. Interestingly, they promoted the nuclear import of TFEB/TFE3 without affecting their nuclear export, suggesting their role in the maintenance of lysosomal homeostasis. The results from this study shed light on the identification of autophagy activators from M. officinalis and provide a basis for developing them in the treatment of oxidative stress-involved diseases.

17.
Front Med ; 17(5): 805-822, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37897562

RESUMO

Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
18.
Nano Lett ; 23(21): 9995-10003, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37857332

RESUMO

Foodborne pathogens are a primary cause of human foodborne illness, making it imperative to explore novel antibacterial strategies for their control. In this study, Fe-γ-CD was successfully synthesized as a food antibacterial agent for use in milk and orange juice. The Fe-γ-CD consists of 6/11 Fe(II) and 5/11 Fe(III), which catalyze a Fenton-like catalytic reaction with H2O2 to generate •OH. Consequently, Fe-γ-CD exhibits exceptional peroxidase-like activity and broad-spectrum antibacterial efficacy. Fe-γ-CD not only disrupts the wall structure of ESBL-E. coli but also induces protein leakage and genetic destruction, ultimately leading to its death. Furthermore, Fe-γ-CD inhibits biofilm formation by MRSA and eradicates mature biofilms, resulting in MRSA's demise. Importantly, Fe-γ-CD demonstrates negligible cytotoxicity toward normal mammalian cells, making it an ideal candidate for application as an antibacterial agent in foodstuffs. These findings highlight that Fe-γ-CD is an effective tool for combating the spread of foodborne pathogens and food safety.


Assuntos
Nanopartículas , gama-Ciclodextrinas , Animais , Humanos , Peroxidase , Escherichia coli , Compostos Férricos/química , Peróxido de Hidrogênio/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Mamíferos
19.
Brain Res Bull ; 204: 110773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793597

RESUMO

Depression is a common mental illness. Ferroptosis is a form of cell death that may be responsible for neurological disease, but the role of ferroptosis in depression remains unclear. tRNA-derived small RNA (tsRNA) is an emerging non-coding small RNA, making it an important medium for studying neurological diseases. Chronic unpredictable mild stress (CUMS) was used to construct the depression model in mice, which was treated with ferrostatin-1 (Fer-1). Classical behavioral test, immunofluorescence and small RNA sequencing were used to detect depression-like behaviors, neuronal proliferation and the expression profile of tsRNAs in mice, respectively. The primary neuronal cell damage model was constructed by corticosterone (CORT), and the function of key tsRNA was investigated by quantitative real-time PCR, western blot and CCK-8 assays. Here, Fer-1 reduced the depression-like behavior of CUMS-induced mice and promoted neuronal growth. In addition, CUMS caused the disorder of tsRNA expression profile in hippocampal tissues of mice, and Fer-1 alleviated the abnormal tsRNA expression, among which tsRNA-3029b was an effective target. In vitro experiments manifested that ROS accumulation and decreased expression of SLC7A11 and GPX4 were found in CORT-induced depression-like cell model, suggesting that ferroptosis was involved in neuronal injury. However, inhibition of tsRNA-3029b suppressed neuronal cell ferroptosis and facilitated neuronal regeneration. In conclusion, Fer-1 showed an antidepressant effect in CUMS-induced mice and alleviated the abnormal expression profile of tsRNA. tsRNA-3029b was a key target in depression, and silencing of tsRNA-3029b reduced the occurrence of ferroptosis and protected neurons from injury, which may provide novel target for the treatment of depression.


Assuntos
Transtorno Depressivo , Ferroptose , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , RNA/farmacologia , RNA/uso terapêutico
20.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298313

RESUMO

Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and ß-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.


Assuntos
Nucleotídeos , Treonina , Humanos , Cristalografia por Raios X , Sítios de Ligação , Coenzima A , Arginina , Adenina , Nucleosídeo NM23 Difosfato Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...